Modeling recreation demand in urban forests in Prague using random utility framework

Jan MELICHAR a Jan URBAN Charles University Environment Center

Seminar on

Forestry Valuation and Policy Relevance

December 14, 2007

Motivation

- the grant of the Czech Ministry of Agriculture ⇒ research on valuation of recreation functions of forests in CR
- to derive recreation demand functions for forest recreation (short trips, one-day and more-day trips) by TCM
 - travel costs models based on discrete choice random utility framework
- to infer determinants of recreation demand and to estimate welfare change associated with the change of forests attributes
 - i. injury on forest quality
 - ii. tree composition
 - iii. age structure of forests
 - iv. etc.

- Valuation of recreation functions of **urban woodland areas** and **parks** in Prague
 - short trips up to 4 hours

The value of recreation losses associated with

1. a **closure** of each urban forest sites in Prague

2. a **50** % **decrease** in extent of urban forest sites, number of benches and length of trails

Random utility model foundation and applications

- Discrete choice demand ⇒ modeling choice of site
- McFadden's work (McFadden, 1974, 1978 and 2001)
- first applied by Hanemann (1978) in order to derive recreation demand
- later developed by Bockstael et al. (1986)
- swimming, fishing, hunting or hiking
- Feenberg and Mills (1980) on water pollution,
 Morey (1985) on the choice of ski areas, or
 Adamowicz et al. (1997) on moose hunting

Random utility model, basic model

Utility function
$$v_i = \beta_{tc} t c_i + \beta_q q_i + e_i$$

Choice
$$\beta_{tc}tc_k + \beta_q q_k + e_k \ge \beta_{tc}tc_i + \beta_q q_i + e_i, i \in S$$

Utility maximazation from trips

$$u = \max(v_1, v_2, ..., v_s)$$

No-participation

$$|v_0| = \alpha_0 + \alpha_1 z + e_i$$

Specification of probability model

Probability of visiting site k

$$pr(\beta_{tc}tc_k + \beta_q q_k + e_k \ge \beta_{tc}tc_i + \beta_q q_i + e_i, i \in S)$$

$$a \ge \alpha_0 + \alpha_1 z + e_0.$$

Multinominal logit model

$$pr(k) = \frac{\exp(\beta_{tc}tc_k + \beta_q q_k)}{\exp(\alpha_0 + \alpha_1 z) + \sum_{i=1}^{S} \exp(\beta_{tc}tc_i + \beta_q q_i)}$$

Access and quality change value

Welfare loss due to closure of recreation site # 1

Welfare change due to quality change q*

Study area – Urban forests in Prague

Survey implementation

- off-site sampling
- pretest in 11 12/2006, pilot in 1/2007 (50 respondents)
- main survey 3 4/2007
- by SC&C spol. s. r. o.
- quota sampling (sex, age, education)
- pen-and-paper questionnaire (35 minutes)
- 303 completed questionnaires for Prague
- recreation object: short term trips (up to 4 h) carried out to urban forests in Prague

recreation season: 4 – 10 /2006

Seasonal average number of short trips according to each urban forest

Descriptive characteristics of sample

Length of trip 3,73 hours

Age (in average 44 years)

 Secondary education (39 %), university degree (14 %)

Net month income 12 710 CZK

Type of recreation activity on trip

Mode of transport on trip

Specification of empirical model

Multinominal model – final model

Parameters	Estimates	Standard error	Estimate/s.e.	Probability
tc	-0.0180	0.0005	-36.66	0.00
area	0.0016	0.0002	8.69	0.00
trails	0.0092	0.0026	3.55	0.00
bench	0.0012	0.0001	8.77	0.00
car	0.1164	0.0796	1.46	0.14
walking	0.5757	0.0445	12.93	0.00
second	-0.2433	0.0595	-4.09	0.00
married	-0.0261	0.0520	-0.50	0.62
fulltime	-0.3678	0.0482	-7.62	0.00
<2poople	0.2860	0.0566	5.05	0.00
const.	4.3498	0.0892	48.77	0.00

Mean log-likelihood = -81.2959

Number of cases = 179

Mean seasonal per person recreational values in CZK 2006

Welfare loss due to 50 % decrease of (in CZK 2006)

Conclusions

- Negative significant relationship between trips demanded and travel costs as theory assumes
- significant positive impact of recreational components in urban forests and forest area on recreation demand
- no-recreation option explained
 - in positive manner by secondary education and fulltime job
 - in negative manner by size of family and walking in forests
- Attention: estimates and significance of parameters could be restrictive due to sample size

future work: multinominal model on **one-day trips** and **more-day** trips in CR

Thank you for your attention

Jan Melichar

jan.melichar@czp.cuni.cz

Jan Urban

jan.urban@czp.cuni.cz

The research on this study was supported by the grant of the Czech Ministry of the Agriculture: 1R56014 - Monetary valuation of recreational and aesthetical function of forest in the CR within the program "Krajina a Budoucnost". This support is gratefully acknowledged..